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Abstract—Accurate electric demand forecasting has become
increasingly crucial with the advent of smart grids, since it may
assist energy distribution and providers in better load scheduling
and decrease surplus electricity generation. Many studies have
focused on developing accurate load forecasting models to attain
the maximum possible prediction accuracy. However, designing
and choosing precise sequential approaches is relatively difficult
to achieve because it necessitates training several different models
considering intermittency and the unpredictable nature of tem-
perature, humidity, solar radiation, and wind speed. Research
often overlooks data preparation procedures, leading to poor
prediction performance. Deep learning approaches are used to
develop short to medium-term aggregate load forecasting models.
Hourly residential load data and location-specific weather data
are collected, evaluated, and tested for optimal performance. The
findings suggest that the GRU model has higher accuracy than the
LSTM model, where the overall accuracy of the GRU and LSTM
models is 98.06% and 96.46%, respectively. The mean average
percentage error of the GRU model was lowest at 1.93%, which
subsequently produced an accurate forecast of the projected
value compared to the LSTM model, which had a higher error
percentage at 3.53%.

Index Terms—Time-series analysis, Forecasting, Deep Learn-
ing

I. INTRODUCTION

Energy generation and distribution continue to raise their
building sizes mutually with rocketing economic development,
and the incorporation of electrical grid infrastructure and
operating modes is increasingly diversifying [1], [2]. Utility
companies can model and anticipate power loads using load
forecasting to maintain the steadiness between the energy
supply chain and energy demand chain, cut production costs,
determine realistic energy pricing, and control scheduling and
long-term capacity planning. Accurate load forecasting is also
important in the design and handling of power plants, manu-
facturing materials, and the efficient functioning of power grid
networks. A time-series dataset is a compilation of inspections
made at routinely distributed time interruption and includes
both linear and nonlinear components [3].

This paper focuses on creating an optimal deep-learning
model for hourly electrical load forecasting. The development
of this system requires careful consideration of factors such
as the number of layers, cells, batch size, and activation type.
The chosen parameters can impact the training process, model
under-fitting, over-fitting, and final model accuracy. However,
this complex and time-consuming task is challenging and
error-prone. The paper aims to develop a deep-learning
model that is accurate and efficient in predicting electrical
consumption.

The several approaches to load forecasting may be broadly
divided into two categories: data-driven methods and engi-
neering methods [4]–[8]. Meteorological criteria are utilized
in engineering methodologies, also known as physics-based
models, to calculate and evaluate energy use, primarily based
on contextual information like building structure and HVAC
system data. In load forecasting over several periods, namely
short, medium, and long term, it is becoming more and more
attractive to adopt data-driven methodologies as a substitute
to physics-based procedures due to the comparatively huge
chunk of energy data accessible [9]. Since it may be used for
peak load anticipation, energy consumption, energy storage
operation, electricity demand management, energy scarcity
risk reduction, and other purposes, short-term load prediction,
or STLF, has become more and more common in smart
grids, microgrids, and buildings [6]. The Box-Jenkins model
was beaten by the adaptive auto-regressive moving-average
(ARMA) model proposed by the authors in Ref. [10], for day-
and week-ahead load forecasting. These multivariate time-
series approaches have a direct description of the temporal
domain, but they are limited by their dimensions, lose accuracy
with time, and require constant training. Other techniques
for energy demand forecasting have included simple linear
regression, multivariate linear regression, non-linear regres-
sion, artificial neural networks (ANN), and support vector
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machines (SVM); they have been used more in the short-
to-medium term [11]–[13] and less in the long term [14].
Random walk prediction showed that SVMs outperformed the
benchmark model, although they were not far off from the
ARMA-GARCH econometric method. To estimate pricing for
the next day, a combination of evolutionary algorithms and
wavelet transform neural networks was used. The combination
above produced a more precise and stable forecasting model
[6], [15].
The research aims to enhance the maturity of deep learning in
solving load forecasting problems by expanding the number
of works with different prediction model designs, considering
factors like meteorological intermittency, input type, signifi-
cance, deep learning version, and validation process. The key
objectives of this research are as follows:

1) To prepare the raw collected data, reshape them accord-
ing to the model needs, and analyze them to understand
the dispersion and probabilistic distribution for better
understanding.

2) To develop a sequential model using the TensorFlow
framework by using both LSTM and GRU methods and
testing the validity using prepared data.

3) To predict future hourly data and validate those predic-
tions using the current data.

Such models are being increasingly used for energy load
forecasting due to their ability to manage the complexities of
energy data, thereby improving efficiency and cost reduction.

II. PROBLEM FORMULATION

The proposed methodological approach shown in Fig. 1
consists of four core operational sections: data preparation,
model selection, LSTM training model, forecasting data, and
visualization. It validates the sample and visualizes the final
output, with model parameters adjusted as an auxiliary oper-
ation.

Fig. 1. Proposed Model.

A. Data Preparation

A neural network model is trained using the Khulshi Substa-
tion electricity use data set from the Power Grid Company of
Bangladesh (PGCB) as shown in Fig. 2 [16]. When a model
is trained with data, it learns from an input set to provide
predictions or carry out particular tasks. Neural networks are a
type of computational learning paradigm that uses a dataset to
execute specified operations. They are inspired by the structure
and operation of the human brain.

Fig. 2. Hourly Load Data

The neural network is trained using a labeled dataset con-
taining input data and desired results. It adjusts its biased and
weighted variables to minimize errors between forecasts and
results. The model is trained using hourly electrical data with
8760 samples, covering 24-hour data for 365 days. The 8:2
ratio of the data sample is used to split the entire data set for
training and validation.

1) Window size & Batch size: The window size, or look-
back of data, is crucial in the RNN prediction model as shown
in Fig. 3, determining the cutout length from a 24-hour data
set for a year.

Fig. 3. Look Back windows and batch size of dataset



This text explains how a look-backk size of 24 is crucial
for sequential data processing jobs, particularly in predicting
time series, such as predicting electrical load for the future.
It emphasizes the importance of considering 24-hour data,
as hourly changes in load consumption can still maintain a
consistent pattern over multiple days.

The batch size is for each sample considered 7 for selecting
data samples for 7 days as shown in Fig4. The total training
dataset of 7008 data points is split into 42 batches where each
batch size is defined as 24× 7 = 168.

Fig. 4. Batch Window

2) Train and Test Split: Cleaning data is crucial for RNN
models as it removes unwanted errors or missing values,
enhancing model performance. An electrical dataset of 8760
samples, covering 24-hour data for 365 days with a 60-minute
resolution, is selected for training and validating the model.
The 8:2 ratio splits the data set for training and validation. 80%
of the total data points, 7008, are used for training, while the
remaining 20%, 1752, are used for validation.

B. Deep Learning Layer

The research focuses on hourly load demand forecasting,
aiming to determine future electrical load demand data. The
choice of a neural network model is crucial as different
data types require different approaches. Performance standard
evaluation is crucial to determine the model’s efficacy. Se-
quential models are more suitable for this situation, as they
are simple stacking layers with a single input and output.
However, sequential models are not suitable for systems with
multiple inputs or outputs or a non-linear topology. Therefore,
the choice of a sequential model is crucial. A time series
generator’s objective is to generate a synthetic or simulated
data set that resembles the attributes of practical time series
data. The hyper-parameter used to develop the LSTM-GRU
model is shown in Table I.

a) LSTM: LSTM layers in machine learning models as
shown in Fig. 5, maintain long-term relationships in sequential
data using memory cells, input, forget, and output gates,
enabling individuals to retain or forget understanding.

b) GRU: GRU layer’s cell structure as shown in Fig. 6,
demonstrates its fewer parameters, resulting in shorter training
times. It’s suitable for limited computational resources or large
datasets and may be more resilient against excessive fitting in
short datasets.

Fig. 5. LSTM Layers

Fig. 6. GRU Layers

1) Activation Method: Deep learning models use activation
processes to stimulate hidden nodes, with ReLU (Rectified
Linear Unit) being a popular non-linear function that incorpo-
rates non-linearity for learning complex data correlations. The
mathematical representation of the ReLu function is expressed
in (1) [6].

f(x) = max0, z (1)

In other words, it outputs the input value x if it is positive,
and otherwise, it outputs zero. This means that ReLU sets
all negative values to zero while leaving positive values
unchanged. The function is piecewise linear with a positive
slope for positive inputs.

f(x) =

{
0 for x ⩽ 0

x for x > 0
= max{x, 0} = x1x>0 (2)

f ′(x) =

{
0 for x ⩽ 0

1 for x > 0
; (0,∞) (3)

When compared to alternative activation functions such as
sigmoid or tanh, the function of ReLU is more efficient in
terms of computation.

2) Optimizer: An optimizer modifies neural network prop-
erties to reduce loss and improve precision. Adam, Adaptive
Moment Estimation, is a popular optimization approach for
neural network training, suitable for large-scale challenges and
demonstrating strong converging qualities in various settings.
This necessitates the setting of a pair of critical variables: the
learning rate (α) and the exponential decay rates (β1) for the
first and subsequent moments estimates (β2). The standard
values for (β1) and (β2) are 0.9 and 0.999, accordingly [6].
The step size in each update is determined by the learning rate.



TABLE I
MODEL PARAMETER

Data Point Total Split Ratio Train Sample Test Sample
8760 8:2 7008 1752

Window Sizing
Window size
(Lookback) Batch size Total number

of batch Number of Epochs

24 168 42 25

Deep learning
model

Neuron
layer Dense layer Optimizer Learning rate

164 5 adam 0.01

Adam calculates the initial and next instances for each param-
eter in the neural network during learning. The first moment is
the average of previous gradients, while the following instant is
the mean of previous gradients twice. The following formulae
are used to determine these moments shown in EQ. (4).

mt = β1.mt−1 + (1− β1).gt

vt = β2.vt−1 + (1− β1).g
2
t

(4)

Because periods are initially set to zero, they are skewed
towards zero, particularly during the early training phases.
Adam implements a bias adjustment to compensate for this
bias by producing distortion-corrected approximations of the
moments calculated using the EQ. (5) [6]. The bias-corrected
values are used for determining the amended value of the
parameters. The updated parameter values for each moment

are estimated using Wt+1 = Wt−α.
m̂t√

(v̂t) + ϵ
, where, Wt+1

is the parameter, α is the learning rate and ϵ is the constant
that added to the denominator for numerical stability.

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

(5)

3) Performance Evaluation: The efficiency of a neural
network is the most basic statistic used for classifying jobs,
calculated by dividing the proportion of correctly categorized
instances out of every instance. However, unbalanced data sets
may limit the precision of this analysis. The main metric that
evaluates the performance of the deep learning model is shown
in Table II.

TABLE II
MODEL PERFORMANCE EVALUATION

Approach Equations

MAPE
1

N

∑N
n=1

∣∣∣∣ x̂i − xi

xi

∣∣∣∣× 100%

MAE
1

N

∑N
n=1 |xi − xi|

RMSE
√

1

N

∑N
n=1 (xi − xi)

2

R2 1−
∑N

n=1 (ωi − σi)
2∑N

n=1 (ωi − ω̄i)
2

4) Forecasting Window Generation: A time series genera-
tor for forecasting windows is a tool or method that generates
a dataset suitable for time series forecasting tasks. Forecasting
Window is shown in Fig. 7. Time series forecasting predicts fu-

Fig. 7. Forecast Window

ture values based on historical patterns in a sequential dataset.
A predictive frame time series generator creates a simulated
dataset using Python’s datetime library. The generator sets start
and end dates and determine the sampling frequency, such as
hourly, daily, weekly, or monthly, to test forecasting models
without relying solely on historical data.

III. ANALYSIS CONDITIONS

The hourly meteorological data from the Chittagong, Khul-
shi area are shown in Fig. 8 [17].

Fig. 8. Meteorological data.



A time series generator generates a synthetic data set that
resembles practical data, allowing forecasting without relying
solely on historical data.

IV. RESULTS AND EVALUATIONS

The figure illustrates residential load distribution throughout
the day, with peak demand hours from 5:00 PM to 7:00
PM. The data shown in Fig. 9 merged with electrical and
meteorological data, is stored in a panda’s database for data
manipulation and analysis before neural network operation.

Fig. 9. Data-set in Panda Data frame

The training set, validation set, and test set are data sets
used in a model’s training phase. The model’s parameters are
modified using input data and output labels. The validation set
as shown in Fig. 10, evaluates the model’s efficacy and high-
level parameters. The model is trained for 200 iterations, with
each iteration reducing training and validation loss in RMSE
and MAE scales.

Fig. 10. Training progress

During the training phase, both the training loss and the
validation loss to evaluated as shown in Fig. 10, how the model
is learning and if it is over-fitting or under-fitting the data. The
performance comparison between two developed deep learning
model is shown in Table III, where both approach shows
accuracy over 96%. However, the GRU performed relatively
better than the LSTM scoring over 98% accuracy.
The performance of two constructed deep-learning models

are compared in Fig. 11, both of which have accuracy levels,
and due to their simplified structure, GRU often converges
faster during training. This is advantageous when one wants
to reduce training time.

TABLE III
PERFORMANCE COMPARISON BETWEEN GRU AND LSTM

Model Overall Accuracy MSE RMSE MAE MAPE (%)

GRU 98.06 % 1.49 1.22 0.86 1.93%
LSTM 96.46% 3.49 1.86 1.45 3.53%

Fig. 11. Error Performance Metrics Comparison

The comparison between originally input data (used for
training), predicted data, and testing data (data used for
validating) is plotted in Fig. 12. The data collection is crucial
to assess the persuasiveness of the model and offer accurate
load estimations throughout the day.

Fig. 12. Actual Vs Predicted Load Curve

Fig. 13. Future Forecasted data (24 hours)

The comparison between historical data and future fore-
casted data is a fundamental aspect of assessing the per-
formance of predictive models, the actual response of the



best-performing model is emphasized in Fig. 13. The GRU
model accurately predicted future load demand and household
electrical power consumption patterns, influenced by human
activity, weather, and other variables. Utility firms use a GRU
model for residential load forecasting, trained on historical
data, to accurately anticipate electricity use for each hour of
the day.

A. Comparative analysis
Comparison with previously studied work is depicted in

Table. IV.

TABLE IV
COMPARISON WITH SIMILAR WORKS

Name Approach Accuracy matric

This study
LSTM & GRU layer forecasting using
location specific intermittent weather
data & on site collected load samples.

365 days (throughout the year):
MSE=1.49 (GRU), 3.35(LSTM)
RMSE=0.86 (GRU), 1.85 (LSTM)
MAPE=1.49 (GRU), 3.350 (LSTM)

Ref. [18]
SVR forecasting model with the ambient
temperature of two hours before DR event
as input variables.

1 day ahead (eight hours on working days):
MAE = 1.57

Ref. [19] A ensemble method based on wavelet transform,
ELM and partial least squares regression

1 h ahead:
MAPE = 1.27 (winter), 1.52 (summer)

1 day ahead:
MAPE = 1.43 (winter), 2.82 (summer)

Ref. [20] Fuzzy prediction interval models
1 day ahead (PINC=90%):
LF nRMSE=6.73, LF nMAE=4.53,
LF NAW=19.08

V. CONCLUSIONS AND RECOMMANDATION

This research uses RNN-based deep learning models, LSTM
and GRU, to forecast residential electrical loads using the
Google Tensorflow framework and Keras library. The GRU
model outperformed the LSTM model with an accuracy of
over 98%, while the LSTM model had an overall accuracy of
around 96%. The best-performing model was used to train data
for future load response. The study highlights the difficulty in
estimating electrical consumption due to the unpredictability
and variability of power load patterns. Previous research has
mainly focused on predicting electricity consumption patterns
using a one-fold forecasting paradigm, which has drawbacks.

The proposed model for power consumption forecasting has
limitations, including the difficulty of capturing continuous re-
lationships in data, short memories due to vanishing gradients,
and complexity in computation and training. To address these
limitations, future works should focus on developing more
sophisticated RNN variations like LSTM and GRU, which
can solve the vanishing gradient issue and accurately repre-
sent longer-term relationships. Combining RNNs with other
methodologies like feature technology, outside factors, and
ensemble approaches can enhance the accuracy and resilience
of load prediction methods.
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