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Abstract—There are increasing concerns about power quality
disturbances (PQDs) at many phases of energy generation,
transformation, distribution, and consumption due to the
increasing interconnection of various energy systems. The basis
for addressing PQDs is the automatic categorization of voltage
or phase angle disturbances. According to a usual standpoint,
the three distinct steps of signal analysis, feature selection, and
classification should be used to separate the detection of issues
with power quality. Nevertheless, signal analysis possesses several
inherent deficiencies, mostly stemming from the laborious and
inaccurate process of human feature selection. Consequently,
this results in diminished classification accuracy when dealing
with many disturbances and a compromised ability to withstand
disruptive interference. This study focuses on the identification
and categorization of PQD using a machine learning-based
classifier, taking into account the features of the power quality
problems problem, eight different features are taken from the
voltage data and used to figure out what caused each PQD.
Various types of machine learning models are employed to
analyze the dataset, and the effectiveness of the machine learning
classifier is assessed by validating its performance using a
separate test dataset. Once the machine learning classifier model
can classify the disturbances types with 96% accuracy. The
proposed classifiers can effectively detect disturbances in the
transmission line.
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I. INTRODUCTION

One of the top objectives for both providers and customers
in the contemporary electric network is to get dependable
and high-quality electricity [1], [2]. Any disturbances, such
as voltage sag, voltage swell, and the presence of harmonics,
that might cause failure or malfunction in the customer’s
equipment are referred to as power quality issues [3]. Power
quality issues in the electric network are caused by the
integration of renewable energy sources like wind power plants
and solar power plants, as well as by the increased use
of power electronics converters, the adjustment or switching
of large industrial loads, and the increased use of sensitive

electronics loads in residential and commercial areas [4], [5],
[6], [7]. A method for identifying and categorizing single-stage
PQDs utilizing a rule-based decision tree and the Hilbert
Transform. Utilizing mathematical relations, the MATLAB
software generates PQDs. The Hilbert Transform is used to
deconstruct the signals, and the output is then used to extract
features for classification.

Numerous studies have been conducted on Power Quality
monitoring systems that have become essential during
the past 20 years. The increasing prevalence of power
electronics–based nonlinear generators and loads in power
grids is one factor contributing to the growing need for
such devices due to the potential for these components
to introduce high-order voltage and current harmonics [8],
[9], [10]. The investigated PQDs include pure sine wave,
voltage sag, voltage swell, momentary interruption, oscillatory
transient, impulsive transient, spike, and notch. The proposed
algorithm’s effectiveness is demonstrated by calculating its
efficiency on testing 50 data sets of each PQD obtained
by varying the disturbance parameters [11]. For classifying
power quality incidents in distribution networks, a machine
learning-based algorithm was proposed. Developing and
evaluating a model to categorize the 16 most common power
quality events such as Normal, sag, swell, flicker, harmonic,
interruption, transient oscillatory, notch, spike, and hybrid fault
combination of two, evaluating the best machine learning
model using the ’Classification Learners’ tool in MATLAB.
Implementing the selected machine learning model for testing
distribution grid circuits using Simulink. Using simulation
data to demonstrate the model’s performance in a range of
operational scenarios [12].

A hybrid, undecimated wavelet transform-based feature
extraction method combining a support vector machine (SVM)
and a trous algorithm is recommended for classifying PQDs
in distributed generators [13]. Due to its selective nature, the
time-frequency-based feature extraction for the classification
of PQDs using deep learning algorithms was selected to be
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the average of instantaneous frequency and spectrum entropy.
[14]. To identify which machine learning model performs the
best, 16 categories of the most common power quality events
are characterized using wavelet transform and certain machine
learning techniques. The development and testing of a machine
learning model for power quality event categorization [15].

The main contribution of this work is to explore the
performance of the machine learning classifier determining the
PQDs in the transmission line’s voltage data of the electrical
power system.

II. METHODOLOGY

The methodology for the study is shown in Fig. 1, consisting
of 3 major sections — 1. Data processing, 2. Features grading
using T-NSE, and 3. Classifier model fitting.

Fig. 1: Methodology

A. Data Processing

Data pre-processing procedures are a crucial stage in the
workflow for both statistical analysis and machine learning. It
comprises preparing the raw data for modeling and carrying
out additional analysis. Here, Voltage data sets of 2.8 ×
104 are taken for a case study which is collected from the
Sagemaker Database [16], different types of disturbance are
defined in columns each containing 20,000 voltage data rows.
This raw data of voltage, current, and power needs to be
pre-processed before using it to train models. The key stages
for data preparation are given as follows —

a) Outliers: Data points known as outliers considerably
differ from the remainder of the data sets. The outcomes of
analysis and modeling may be distorted because of outliers.
In this study, the outliers are replaced with equivalent values,

such as mean, median, or tailored estimating approaches for
voltage data sets. The signal-to-noise (SNR) of the data set is
transformed into the log scale to lessen the outlier impact.

b) Missing Values: Missing data might lead to skewed
or inaccurate findings. To remove such an error. Rows and
columns having a large percentage of missing values are
removed.

c) Appending Time Lags: Time delays are used to
highlight variations in time in data sets. This enables the
classifier model to take the data’s past into account while
generating predictions.

d) Data Scaling: Scaling is crucial to prevent
the learning process from being dominated by distinct
characteristics with varying ranges. Standardization is the
process of re-scaling characteristics with a mean of 0 and
a standard deviation of 1. The RobustScaler is used for
K-Nearest Neighbour (KNN) classifier.

e) Data Sample Split: The data needs to be split into
training and testing sets in order to evaluate the model’s
performance on data that has not been tested. A split ratio of
8:2 is employed where 80% of data is being used for training
and 20% of data is being used for testing.

Fig. 2: Normal, Seg, Swell, Interruption Voltage waveform



f) Data Visualization: In power system analysis, PQDs
are variations from the typical sinusoidal voltage waveforms.
The voltage data of 11 types of PQD is taken as input for
determining the best deep-learning model that can classify the
types of fault causing the disturbance [1]. Sinusoidal PQD
are any abnormalities in a power system’s voltage waveforms.
Over-voltage, under-voltage, interruption brought on by an
external signal, or an asymmetrical line fault, as shown in
Fig. 2, can all produce disturbance in power quality.

Fig. 3: Flicker, Oscillatory Transient, Notch, and Spike Voltage
waveform

Momentary disruption is a lightning strike or switching
activity that results in a rapid, large-amplitude, brief voltage
shift is called transient disturbance, Rapid and erratic voltage
changes that cause apparent light variation in incandescent
bulbs are known as flickers and Voltage notching is the process
of reducing voltage levels at particular frequencies for a brief
period. Equipment switching, operation, or other forms of
interference can all contribute to it, And an instance of a
PQD known as an oscillatory transient is one in which voltage
levels change rapidly and repeatedly, as shown in Fig. 3.

Oscillatory transients can result from a variety of things, such

Fig. 4: Harmonics, Flicker-harmonics, Sag-harmonics, and
Swell-harmonics voltage waveform

as rapid switching processes, malfunctions, and interactions
between different pieces of equipment in the power system.
These interruptions can also be brought on by lightning strikes,
swapping capacitors banks, and other quick changes in the
network. The existence of non-sinusoidal waveform parts at
multiples of integers of the basic frequency is known as
harmonic distortion and these can be caused by nonlinear
loads [1]. Harmonic disturbance can simultaneously occur with
flicker, sag, and swell events as shown in Fig. 4 of the data
set.

B. Features selection

A key component of getting data ready for machine
learning classifier training involves feature selection. To
enhance the accuracy of your models, lower the complexity
of computation, and avoid over-fitting, which entails locating
and selecting the most pertinent and instructive characteristics
from the data set. The data set is reduced in dimensions.
High-dimensional data might present problems such as
potential over-fitting and higher processing complexity. By



reducing the number of unnecessary characteristics, feature
selection increases the generalization and effectiveness of
models. Various methodologies can be utilized to conduct
feature selection within the framework of machine learning
classifiers [2] such as - Minimum, maximum, Mean,
Root-mean-square (RMS), Disturbance-energy-ratio (DER),
Standard deviation (σ), Variance (σ2), Phase Skewness and
Kurtosis values as per disturbance type shown in Fig. 5.

(a) Minimum, maximum, mean, and RMS features of data set

(b) Disturbance ratio, standard deviation, variance and skewness of
data set

Fig. 5: Features of data set

The utilization of a pair plot shown in Fig. 5 serves as a
valuable visualization tool that provides numerous advantages
in facilitating a thorough comprehension of given features of
the data set. A pair plot offers a comprehensive perspective
on the relationships, patterns, and distributions present in the
data by generating scatter plots for every possible combination
of variables and incorporating diagonal plots to depict the
distributions of individual variables. In Fig. 5b, the relation
between disturbance ratio and skwnees seems proportional

for some types of disturbance, and others are inversely
proportional. Even though the raw voltage data may seem
symmetrical as s sinusoidal data, looking at the features of the
data set gives another broader aspect of different data types
and how each of the disturbances can be differentiated from
each other.

1) T-SNE model fitting: T-Distributed Stochastic Neighbor
Embedding (T-SNE) is a method used for reducing the
complexity of data sets. This technique provides numerous
advantages in terms of facilitating the understanding and
interpretation of intricate data [17]. Here, a total of 8 features
— min, max, mean, RMS, disturbance ratio, SD, variance,
and skewness are considered for a total of 14 types of
disturbance in power quality. The considered disturbance types
of the power quality are Sag, Swell, Flicker, Interruption,
Oscillatory transient, Notch, Spike, Harmonics, flicker with
harmonics, sag with harmonics, swell with harmonics,
interruption with harmonics, and Oscillatory transient with
harmonics. The t-SNE algorithm is applied for capturing
intricate non-linear associations inside data sets characterized
by high dimensional. Fig. 6 displays the T-SNE projection,
which aids in comprehending the data set and the association
among various types of disturbance, specifically concerning
the voltage characteristic.

Fig. 6: T-SNE Projection

C. Classifier Model

In the field of machine learning, a classifier model pertains
to a certain neural network architecture that is devised to
allocate input data points into distinct categories or classes.
Classification tasks encompass the prediction of the most
suitable class label for a given input. machine learning
classifiers possess significant efficacy due to their inherent
ability to autonomously acquire and extract hierarchical
features from the input data, hence facilitating their capacity
to effectively address intricate patterns and variations. The
machine learning classifier model from scikit-learn library
is used to import the following functions - random forest,
Gaussian naive Bayes, decision tree, support vector, logistic
regression, K-Nearest Neighbour, and bagging classifier.
RobustScaler() function is used to process the input train data



for the K-Nearest Neighbour classifier. By fitting the process
data set of the training series, the model is established.

D. Hyper-parameter

Hyper-parameters refer to the parameters of a machine
learning algorithm that are predetermined before the
commencement of the learning process. The hyperparameters
utilized in the aforementioned machine learning classifier are
presented in Table I.

TABLE I: Hyper-parameter of Classifier [18]

Parameter Value Classifier
Data Sample 20000 All
Split ratio 8:2 All
Epochs 3 All

Iteration 1000 Random Forest, Decision-Tree,
GaussianNB, KNN, SVM classifier

3000 Logistic Regression
Number of neighbors 100 KNN
Solver L-BFGS Logistic Regression

Estimator SVC
(n=10) Bagging Classifier

Random state 1 All
0 Bagging Classifier

III. RESULTS AND ANALYSIS

A weighted average considers each type of disturbance in
power quality that is tested with validation with each classifier.
The weighted average accuracy for determining the PQD
using different classifiers is shown in Fig. 7. The Random
Forest classifier shows the best results for determining the
different types of PQD with around 95.5% weighted average
validation score, followed by the decision tree classifier 92.2%
weighted accuracy score. This means these two machine
learning classifiers can determine the types of disturbance in
the power system with 92.2 to 95.5% accuracy.

Fig. 7: Validation score of different classifier

A total of 14 different types of disturbance in power are
tested using affirmation models and the classification report
is provided in Table II. The random forest classifier and the
decision tree classifier model performed best compared to
other machine learning classifier models with an accuracy of

around 92.2% to 95.5%. The overall accuracy of the model is
the weighted average on the individual performance detection
of the given problem as shown in Table II.

TABLE II: Classification Report

Types of Disturbance Random Forest Decision Tree

Precision Recall F1-score Precision Recall F1-score

Flicker 0.99 0.99 0.99 0.99 0.99 0.99
Flicker with harmonic 0.85 0.79 0.82 0.76 0.72 0.73
Harmonic 0.83 0.89 0.85 0.76 0.79 0.77
Interruption 0.98 1.00 0.99 0.96 0.96 0.96
Interruption with harmonic 0.90 0.87 0.89 0.80 0.82 0.81
Notches 1.00 1.00 1.00 1.00 1.00 1.00
Normal 0.98 1.00 0.99 0.98 0.95 0.97
Oscillatory transients 1.00 1.00 1.00 0.96 0.99 0.98
Oscillatory transient with harmonic 0.99 1.00 0.99 0.96 0.96 0.96
Sag 0.99 0.98 0.98 0.96 0.96 0.96
Sag with harmonic 0.87 0.90 0.89 0.81 0.78 0.79
Spikes 1.00 0.97 0.98 0.94 0.96 0.95
Swell 0.99 1.00 0.99 0.99 1.00 0.99
Swell with harmonic 1.00 0.99 1.00 1.00 1.00 1.00

Weighted avg. accuracy 0.95 0.92

The confusion matrix of the best-performing classifier for
the PQD is shown in Fig 8.

(a) Decision tree classifier

(b) Random forest classifier

Fig. 8: Confusion matrix



The confusion matrix is a tabular representation of a
comprehensive assessment of the performance of a machine
learning model in a classification problem. The evaluation
process aids in comprehending the efficacy of the model
in accurately categorizing situations into distinct classes by
juxtaposing its predictions with the verifiable ground truth.
The utilization of a confusion matrix proves to be highly
advantageous in obtaining valuable insights regarding the
specific categories of errors that the model is generating. The
overall data for all the classifier models used in the proposed
study is given in Table III.

TABLE III: Performance between different classifiers

Classifier Models Accuracy Score Precision Score Recall Score F1 Score

Random Forest 0.955 0.955 0.955 0.955
Gaussian Naive Bayes 0.814 0.837 0.814 0.818
Decision Tree 0.922 0.922 0.922 0.922
Support Vector 0.512 0.554 0.512 0.467
Logistic Regression 0.654 0.662 0.654 0.632
K-Nearest Neighbors 0.760 0.762 0.760 0.757
Bagging Classifier 0.513 0.576 0.513 0.473

The evaluation of a model’s performance should begin
with accuracy, but it is crucial to also take into account
additional metrics such as precision, recall, and F1-score. This
comprehensive approach is particularly important in situations
where there is a disparity in class or varying costs related to
false positives and false negatives.

IV. CONCLUSIONS

The utilization of power quality monitoring technologies
has become imperative, prompting numerous recent research
to concentrate on the identification and categorization of
power quality issues. Currently, a significant impediment to
the direct comparison of PQD classification techniques is
the absence of a standardized database that may serve as a
benchmark. In this study, we put out a proposition for an
open-source transmission line voltage dataset, that was taken
as a case study to train different types of machine learning
classifier models to detect the PQDs within the dataset. These
disturbances are characterized by different levels of repetition
and random characteristics. Additionally, the application has
two reference classifiers that perform best for classifying
such problems. Given the impressive performance exhibited
by these classifiers, we propose that they be employed
as standard benchmarks within the research community to
advance the development of novel and enhanced methods for
PQD classification.

Future studies should be focused on integrating the
best-performing machine learning classifier to detect
synthesized real-time disturbance data

REFERENCES

[1] K. Thirumala, S. Pal, T. Jain, and A. C. Umarikar, “A classification
method for multiple power quality disturbances using ewt based adaptive
filtering and multiclass svm,” Neurocomputing, vol. 334, pp. 265–274,
2019.

[2] S. Wang and H. Chen, “A novel deep learning method for the
classification of power quality disturbances using deep convolutional
neural network,” Applied energy, vol. 235, pp. 1126–1140, 2019.

[3] Y. Xi, Z. Li, X. Zeng, X. Tang, Q. Liu, and H. Xiao, “Detection of
power quality disturbances using an adaptive process noise covariance
kalman filter,” Digital Signal Processing, vol. 76, pp. 34–49, 2018.

[4] U. Singh and S. N. Singh, “A new optimal feature selection scheme
for classification of power quality disturbances based on ant colony
framework,” Applied Soft Computing, vol. 74, pp. 216–225, 2019.

[5] A. I. Ikram, A. Ullah, D. Datta, A. Islam, and T. Ahmed, “Optimizing
energy consumption in smart homes: Load scheduling approaches,” IET
Power Electronics, Jan 2024.

[6] A. I. Ikram, M. Shafiullah, M. R. Islam, and M. K. Rocky,
“Techno-economic assessment and environmental impact analysis of
hybrid storage system integrated microgrid,” Arabian Journal for
Science and Engineering, Feb 2024.

[7] H. Liu, F. Hussain, Y. Shen, S. Arif, A. Nazir, and M. Abubakar,
“Complex power quality disturbances classification via curvelet
transform and deep learning,” Electric Power Systems Research, vol.
163, pp. 1–9, 2018.

[8] M. H. Bollen and I. Y. Gu, Signal processing of power quality
disturbances. John Wiley & Sons, 2006.

[9] E. Hossain, M. R. Tür, S. Padmanaban, S. Ay, and I. Khan, “Analysis
and mitigation of power quality issues in distributed generation systems
using custom power devices,” Ieee Access, vol. 6, pp. 16 816–16 833,
2018.

[10] S. K. Khadem, M. Basu, and M. Conlon, “Power quality in grid
connected renewable energy systems: Role of custom power devices,”
in International Conference on Renewable Energy and Power Quality
(ICREPQ). IEEE, 2018.

[11] R. Saini, O. P. Mahela, and D. Sharma, “An algorithm based on hilbert
transform and rule based decision tree classification of power quality
disturbances,” in 2018 IEEE 8th Power India International Conference
(PIICON). IEEE, 2018, pp. 1–6.

[12] T. P. Tun and G. Pillai, “Power quality event classification in distribution
grids using machine learning,” in 2021 56th International Universities
Power Engineering Conference (UPEC). IEEE, 2021, pp. 1–6.
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