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Abstract

Rising fuel prices, global warming, and environmental damage are leading to increased
demand for rooftop solar energy systems connected to the power grid. The develop-
ment of smart grids, modern metering systems, and energy management could promote
energy conservation in households. In this study, two different meta-heuristic optimization
techniques were employed to schedule the shiftable load in suitable hours for decreasing
electricity costs and minimizing peak to average ratio in a smart home while maintaining
optimum user comfort. For power generation and storing energy, a grid-connected resi-
dential load with rooftop solar panels, a battery, and an inverter is considered. First, the
problem is theoretically described using a load model and an objective function, with the
primary goal of reducing power costs by moving the time of usage for certain home appli-
ances. Simulations validate the proposed strategies, which effectively reduce power costs
by 4.5% by shifting the time of use, with both optimization algorithms showing similar
output. The residential electricity cost before optimization was 507.12 BDT/day, which
decreased to 484.33 BDT/day after optimization without compromising load turn-off.

1 INTRODUCTION

Recently, there has been a considerable increase in the world’s
energy use. Nowadays, fossil fuels account for the vast major-
ity of energy production, which increases carbon emissions. To
meet the growing demand for electricity while reducing carbon
emissions, researchers have investigated alternative methods of
generating energy known as renewable energy sources (RES).
Also, the penetration of RES has greatly raised the complexity
of the electricity system. Deploying RESs on a large scale to the
existing conventional power grid could potentially intensify the
vulnerability of an already heavily burdened power system [1].
The integration of cutting-edge information and communica-
tion technologies (ICTs) with the traditional power grid, or the
conversion of the present electric power system to the “smart
grid,” is one of the greatest solutions to this problem [2]. These
technologies allow the smart grid to effectively combine the
RESs and DG in addition to making use of the stability and
dependability of the electricity supply.

The growing population continuously uses more electric
appliances, which raises the power demand. Because conven-
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tional means of power generation are expensive and have large
carbon emissions, RESs offer scientists a profitable solution
to the world’s growing electricity need. Thus, it’s essential to
use RESs to produce more electricity locally. Also, in order to
develop alternative power-generating strategies, we must max-
imize the currently available power sources. Researchers are
aiming to increase the efficiency of the power sector’s use of
renewable energy generation for this purpose [3]. A microgrid
is a component of a smart grid, which is a straightforward tra-
ditional electric system with ICT integration. The idea behind
a microgrid is that more energy will be produced locally and
that power may be used in an efficient and dependable man-
ner. The electricity of a microgrid will meet the energy needs
while also significantly lowering the cost and peak-to-average
ratio (PAR). In order to successfully control demand on smart
grids, the smart home energy management system (SHEMS) is
a crucial residential system [4, 5]. In smart homes, it employs
the human-machine interface to monitor and organize different
home appliances in real-time based on the user’s preferences
in order to save power costs and increase energy consumption
efficiency [6, 7]. There are more and more dispersed renewable
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energy sources, including wind turbines, solar panels, plug-in
electric vehicles etc., as a result of rising worries about the secu-
rity of the world’s energy supply and environmental pollution
would gradually increase penetration and be gird-integrated into
the active distribution networks [8, 9]. Building renewable and
stored energy sources placed at residential premises can be used
in smart HEMS to increase the in-home efficiency of energy
conversion and consumption [10].

Several research studies have been carried out to balance
energy consumption by using load-shifting schemes to mini-
mize the electricity cost and peak-to-average ratio to construct
an efficient SHEM system. According to one study, combining
RESs into the residential sector delivers the most cost-efficient
alternatives [11–13], a transferable energy management sys-
tem by incorporating the deep reinforcement learning method
and dueling network architecture for hybrid electric vehicles
[14]. This hybridization of RESs and utilization of distributed
energy resources (DERs) increases energy flexibility, reliabil-
ity, and sustainability while removing redundancies. The SHEM
approach considers the peak power limitation DR plan for a
smart household, which includes both smart appliances and
EV charging [15, 16]. In ref. [17], the author discussed an
effective energy management model for a grid-connected solar
power and battery hybrid system. Their approach minimizes
the cost of electricity while taking into account limitations on
power balance, solar output, and battery capacity. In order to
dispatch the power flow in real-time based on unknown dis-
tributions, they employed the open and closed loop approach.
These two techniques produced significant cost savings and
effective control. Additionally, the writers did not take UC into
account. In ref. [17], the author looked into a power schedul-
ing challenge using RESs and energy storage. They classified
the appliances into five categories and offered an alternative
approach and method for this model based on mixed integer
programming (MIP). MIP complicated the situation and could
not manage multiple gadgets. They also disregarded the UC.
Another study used MILP to develop a framework for HEMS
modeling and techno-economical sizing. They contrasted the
DR actions for the daily energy consumption demand pro-
file of household electronics to the usual daily power demand
curve. They concentrated on distributed generation (DG) and
Battery bank storage (BBS) cost reduction, load variation, and
a dispersed generating profile for various times of the year.
They also explored alternative sensitivity analyses for the pre-
sented model, taking into account the influence of differences
in economic input for a long-term study. Reducing the electric-
ity bill and peak-to-average ratio are the common objectives of
various demand response (DR) and demand-side management
strategies in the smart grid. Energy consumption is balanced
via load-shifting plans employed by the research community
to create an efficient SHEM system [18], Integer linear pro-
gramming [19], dynamic programming, and multi-parametric
programming [20] etc. Nevertheless, the energy consumption
patterns of these algorithms are erratic, and they are unable to
manage a wide variety of household equipment. Here a strategic
approach is shown in this study which utilizes the combination
of the solution in order to reduce the electricity bill and peak

FIGURE 1 Proposed model.

to average usage of load demand. The majority of residential
energy use in a typical smart home is typically accounted for by
thermostatically controlled appliances, such as the heating, ven-
tilation, and air conditioning system, electric water heater, and
refrigerator. The usage of SHEMS has become more appeal-
ing to both power utilities and customers as a result of the
issue with the energy crisis and rising load demand. Conse-
quently, with the customers’ approval, the SHEMS may play a
significant role in ensuring the best coordination and scheduling
of various smart appliances and the construction of renew-
able energy sources. By smartly shifting the load demand to
the consumer end, the excess need for generation in the peak
hour can be reduced. The key contributions of this study are as
follows:

∙ Design a SHEMS consisting of solar panels as a renewable
energy generator, Battery as energy storage, shiftable load
demand, and non-shiftable load demand connected with the
utility grid connection.

∙ Develop an optimization objective function for reducing the
electricity bill by shifting the time of use (TOU) of the load
demand.

∙ Employ two meta-heuristic approaches - particle swarm opti-
mization (PSO) and real-coded genetic algorithm (RCGA),
that can minimize the electricity bill, reduce the peak energy
consumption by dispatching the load, and compare the
outcome of both approaches.

2 DEVELOPING MODEL

In this section, the methodology required for problem formu-
lation is discussed. Figure 1 shows the proposed model, which
is formulated using the mathematical approach to estimate the
renewable generation and different types of load consumption
appliances. The optimization technique is used to minimize
electricity costs by finding the optimal TOU.
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2658 IKRAM ET AL.

2.1 Solar panel modeling

The proposed smart home includes a rooftop solar system since
sunlight is more readily available and less expensive than other
RESs such as wind turbines, biomass generators, bio-gas plants,
tidal energy harvesters, and geothermal energy harvesters. A
mathematical model is used to replicate how solar energy will be
generated from solar irradiation and contribute to a home load
consumption model as a renewable generation source. Solar
photovoltaic (PV) cells are fundamentally p-n junction semicon-
ductors whose photo-generated current is directly proportional
to the amount of solar radiation [21]. An hourly generation from
a rooftop solar panel can be calculated from the input solar radi-
ation it receives which can be obtained using the Equation (1)
[22].

Gsolar(t ) = Vsolar,oc × Isolar,max(t ) (1)

Here, Gsolar(t ) is the hourly energy generation, t is the hourly
vector, Vsolar,oc is the open circuit bus voltage of the inverter
which is attached to the solar panel and Isolar, max(t ) is the hourly
current generated by solar panel respect to the solar radiation.

The Equation (2) is used to estimate the current generated by
the solar panels [23].

Isolar, max(t ) = Np.Iphoto(t ) − Np.Isat(t )

×

[
exp

(
e

(
V

A.k.Ns.Tc.

)
− 1

)]
(2)

Here, (Iphoto) is the photo-generated current and (Isat ) is the
saturation current which is calculated using Equation (4), and
Equation (5) respectively [22, 24].

Iphoto(t ) = [Isc + 𝜎.(Tc − Tref(t ))] × DNI(t ) (4)

Isat(t ) = Irs ×

(
Tc

Tref(t )

)3

× exp

⎡⎢⎢⎢⎢⎣
e.Ebg

(
1

Tref(t )
− 1

)
k.A

⎤⎥⎥⎥⎥⎦
(5)

Here, DNI(t ) is the hourly solar radiation, Ebg = 1.11eV ,
is the semiconductor’s band-gap energy, e = 1.6 × 10−19 C is
charge of one electron, and k = 1.38065 × 10−23J .K−1 is the
Boltzmann’s constant. Tref = T (t ) + 273.15 K is the reference
temperature of ambient temperature T (t ) in kelvin scale. All
the other parameter values related to the selected solar panel
Sunpower SPR-A450-COM (450W) are given in Table 1.

2.2 Battery modeling

Energy generated by the solar panel is reserved in the battery
pack through the inverter model when renewable generation is
available. In the time of no renewable generation, the battery
pack discharges the energy to the peak load demand. The instan-

TABLE 1 Specification of solar panel [25].

Name Symbol Value

Rated capacity (STC) PVrate,stc 450 W

Rated capacity (PTC) PVrate 418.3 W

PV efficiency 𝜂cell 22.16%

Voltage (maximum point) Vmpp 44 V

Current (maximum point) Impp 10.2 A

Bus voltage (open-circuit) Voc 51.9 V

Max current (short-circuit) Isc 11 A

Wind speed V 3.1 m/s

Reference temperature Tref 25◦C

Normal operating cell temperature TNOTC 45◦C

Temperature coefficient 𝜎 0.0035 A/K

Cell factor (ideal) A 1.31

Number of series cells in a module NS 128

Number of parallel cells in a module Np 1

Number of series modules in a panel NmS 10

Number of parallel modules in a panel Nmp 2

taneous SOC of the battery (BSOC) can be determined using the
Equation (6) [13, 26].

BSOC(t )
BSOC(t − 1)

= ∫
t−1

t

Gsolar(t ).𝜂inverter

Vsolar, oc
dt (6)

Here, BSOC(t ) is the instantaneous SOC of the battery,
Gsolar(t ) is the hourly energy generated by the solar panel, max-
imum amount stored energy in the battery is estimated using
Bmax

SOC = Bcap × Bvol, where Bcap = 100 Ah is the maximum
amount of charge possible to store in the battery and Bvol =

12 V is the terminal voltage of the battery, 𝜂inverter = 90% is the
inverter’s efficiency and t is denoted as the hourly vector.

2.3 Residential load modelling

The load consumption model consists of two types of load, 1.
Shiftable load and 2. Non-shiftable load. Shiftable appliances
are interruptible loads whose time of use (TOU) can be shiftable
when the electricity cost is loaded. or simpler terms, the load can
be shifted in peak-load demand.

2.3.1 Shiftable load

The hourly energy usage for the residences is taken into account
while creating the electrical load model. The 24-h time is
denoted as T , where, T = [1, 2, 3, … .24] is assumed to be 24 h.

CSL =
{
𝛼1, 𝛼2, … , 𝛼n

}
(7)

Each interruptable load of home appliances is represented
by 𝛼i and consumes an amount of energy (ES

t ,𝛼i∈CSL) where the
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IKRAM ET AL. 2659

TABLE 2 Shiftable electrical load.

Summer load Winter load

Electrical load Quantity Power Usage (h/day) Wh/day TOU (t) Usage (h/day) Wh/day TOU (t)

Blender 1 750 1 750 10:00AM - 11:00PM 1 750 10:00AM - 11:00PM

Iron 1 750 1 750 12:00PM - 1:00PM 1 750 12:00PM - 1:00PM

Heater 1 1000 11 11,000 7:00PM - 6:00AM 11 5500 7:00PM - 6:00AM

Microwave oven 1 1000 3 3000 7:00AM - 8:00AM; 3 3000 7:00AM - 8:00AM;

5:00PM - 7:00PM 5:00PM - 7:00PM

Rice cooker 1 750 3 2250 12:00PM - 1:00PM; 2 1500 12:00PM - 1:00PM;

8:00PM - 11:00PM 8:00PM - 9:00PM

Washing machine 1 1000 4 4000 9:00AM - 1:00PM 2 2000 9:00AM - 11:00PM

Water heater 1 1300 3 3900 7:00AM - 8:00AM; 4 7800 7:00AM - 8:00AM;

12:00PM - 1:00PM; 12:00PM - 1:00PM;

9:00PM - 11:00PM 8:00PM - 10:00PM

Water pump 1 750 3 2250 12:00PM - 1:00PM; 2 2250 12:00PM - 1:00PM;

8:00PM - 10:00PM 8:00PM - 9:00PM

Total 29.4 kWh/day 24.3kWh/day

usage time t ∈ T is given on Table 2. The daily energy consump-
tion by shiftable load can be calculated using the Equation (8).

LSL
𝛼 =

24∑
t=1

(
CSL∑
𝛼i

ESL
t ,𝛼∈CSL

)

=
{

ESL
t 1,𝛼1∈CSL + ESL

t 2,𝛼2∈CSL +⋯+ ESL
t 24,𝛼n∈CSL

} (8)

Here, “t ” is the usage time of each appliance and the start point
of time of use is the decision variable which is later determined
by the PSO algorithm.

2.3.2 Non-shiftable load

ToU of non-shiftable Load remains uninterruptible regardless
of the time. ToU and the usage time (t) both are fixed in this
load model.

CNL =
{
𝛽1, 𝛽2, … , 𝛽n

}
(9)

Each uninterruptible load of home appliances is represented by
𝛽i and consumes an amount of energy (ENL

𝜏,𝛽i∈CNL
) where the

usage time 𝜏 ∈ T is fixed given on Table 2. The daily energy
consumption by non-shiftable load can be calculated using the
Equation (10).

LNL
𝛽

=

24∑
𝜏=1

(
CNL∑
𝛽i

ENL
𝜏,𝛽∈CNL

)

=
{

ENL
𝜏1,𝛽1∈CNL

+ ENL
𝜏2,𝛽2∈CNL

+⋯+ ENL
𝜏24,𝛽n∈CNL

}
(10)

Here, “𝜏” is the usage time of each appliance fixed and defined
with their respective power rating in Table 3.

The daily energy consumption by both shiftable and non-
shiftable load by all load appliances can be calculated using the
Equation (11).

Ltotal = LSL
𝛼 + LNL

𝛽

=

24∑
t=1

(
𝛼n∑
𝛼1

Eti ,𝛼i∈CSL +

𝛼n∑
𝛽1

E𝜏,𝛽i∈CNL

)
(11)

Here, t is the TOU for shiftable loads and also the decision vari-
able. But 𝜏 is the TOU for uninterruptible loads which are not
the decision variable which means loads are bound to run on
the given moment without interruption.

2.4 Energy pricing modeling

A real-time energy pricing model is employed to determine the
electricity pricing of the day. The working hours can be classi-
fied as 1. Peak load demand hour, and 2. Off-peak hour. Energy
pricing for shiftable loads is estimated using the Equation (12).
Where Ertp is the real-time pricing that defines the price in peak
hour and off-peak hour.

PriceSL =

24∑
t=1

(
𝛼n∑
𝛼=1

(
LSL
𝛼∈CSL × 𝛿𝛼∈CSL

)
× Ertp(t ))

)
(12)

𝛿𝛼,SL(t ) =

{
1 if CSL𝛼 is ON

0 if CSL𝛼 is OFF
(13)
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2660 IKRAM ET AL.

TABLE 3 Non-shiftable electrical load.

Summer load Winter load

Electrical load Quantity Power Usage h/day Wh/day TOU (𝝉) Usage h/day Wh/day TOU (𝝉)

Light 3 60 8 1440 5:00PM - 12:000AM 7 1260 5:00PM - 11:000AM

Celing fan 1 200 21 12,600 5:00PM - 10:00AM;

12:00AM - 2:00PM

Refrigerator 1 1000 24 8400 12:00AM - 11:00PM 24 8400 12:00AM - 11:00PM

Television 1 1000 8 8000 3:00PM - 5:00PM; 7 7000 3:00PM - 5:00PM;

8:00PM - 12:00AM 8:00PM - 11:00AM

Computer 1 750 8 6000 3:00PM - 5:00PM; 7 5250 3:00PM - 5:00PM;

8:00PM - 12:00AM 8:00PM - 11:00AM

Total 36.44kWh/day 21.91kWh/day

Energy pricing for uninterruptible loads is estimated using
the Equation (14).

PriceNL =

24∑
t=1

(
𝛽n∑
𝛽=1

(
LNL
𝛽∈CNL

× 𝛿𝛽∈CNL

)
× Ertp(t ))

)
(14)

𝛿𝛽,NL(t ) =

{
1 if CNL𝛽 is ON

0 if CNL𝛽 is OFF
(15)

The total electricity price for the day is calculated by adding
PriceSL and PriceNL.

3 OPTIMIZATION APPROACH

3.1 Objective function

The primary goal of this study is to reduce electricity costs for
optimum user comfort through efficient management of smart
appliances. A single smart home is assumed with PV and bat-
tery installed that can provide energy in the time of peak hours
and deficit energy can be consumed from the existing grid. The
energy management controller (EMC) makes a decision based
on a predetermined objective function to let any smart appli-
ance perform its action in a specific time slot shown in the
Equation (16).

min
((

Ltotal(t ) − Gsolar(t ) − Bsoc(t )
)
× Ertp(t )

)
(16)

3.2 Constraints

It is an important factor for optimization problems to maintain
all the conditions given before finding the minimum cost for the
system as is shown in conditions (17). It is implemented such
that only if all the given conditions are satisfied is the optimiza-
tion algorithm allowed to take the sets of solutions that offer
minimum cost for the system.

TABLE 4 Optimization parameter.

Parameter Values

Population size 20

Maximum iteration 500

TOU dimension 8

Epochs number 3

Upper-limit 24

Lower-limit 1

Enim(t ) ≤Eug(t ) + Gsolar + Bsoc(t ), ∀ 1 ≤ t ≤ 24

Enim(t ) =LNL
req + LSL

req

t0 ≤ tsch ≤ tmax

Bmin
soc ≤Bsoc(t ) ≤ Bmax

soc

(17)

Here, t is the particular time slot, Enim(t ) is the hourly energy
consumption by load demand, and Eug(t ) is the hourly energy
that can be taken from the electrical grid. t0 ≤ tsch ≤ tmax are
the lower bound and upper bound of the scheduling perspective
boundaries, respectively. Tsch is the scheduling time of shiftable
load appliances. Bmin

soc is the lowest level SOC of the battery and
Bmax

soc is the highest level SOC of the battery.

3.3 Decision variables

The Optimization parameter is listed in Table 4 and is used
to check the constraints and determine the decision variable.
Here, the dimensions of the populations and the number of
solutions required to search within the specified limitations are
provided. Each set of populations in the initial iteration of the
PSO optimization contains the amount of time that is required
to be moved. Population size determines how many sets of solu-
tions to use, and the TOU dimension determines how many
loads need to be relocated to obtain the lowest possible peak-
to-average and electricity cost ratios. The number of hours that
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IKRAM ET AL. 2661

FIGURE 2 PSO flowchart.

should be moved for specific loads is determined by the higher
and lower limits. For the initial iteration of the optimization
strategy, each of these variables is initially created. Beginning
with the second iteration, the PSO and RCGA each use a differ-
ent methodology, as seen in Figures 2 and 3. The final definition
of Epochs number is the total number of times optimization
progress has been made. The goal is to guarantee that three
successive solutions get the best result.

3.4 PSO modeling

PSO is a population-based optimization algorithm that is
inspired by the social behaviour of bird flocking, where
individuals coordinate their movements based on their own
experiences and the experiences of their neighbours [27]. Here,
PSO is employed to determine the best possible TOU for
interruptible loads.

3.4.1 Algorithm flowchart

The flowchart for the PSO is shown in Figure 2, where a popula-
tion set of potential solutions, particles, flows around the search
space in pursuit of the best solution. In this case, this is the TOU
for the shiftable loads. Each TOU is a potential solution with
its own position and velocity. A TOU’s position correlates to

FIGURE 3 RCGA flowchart.

TABLE 5 PSO and RCGA parameters [29, 30].

PSO RCGA

Parameters Values Parameters Values

Velocity limit −5 < V < 5 Elite population 2

Weight limit 0.2 < W < 0.9 Crossover probability 70%

Acceleration coeff. 2 Mutation probability 2%

a potential solution to the problem, and its velocity determines
the amount and direction of its travel in the search space. TOU’s
mobility is controlled by their individual best-known position,
Personal best for minimum electricity cost as well as the best-
known position (lowest electricity cost) of the total iteration.
Based on these two positions, each set of TOU adjusts its veloc-
ity and updates its own position. The personal best indicates the
particle’s best solution thus far, while the global best is the best
solution found by any particle in the entire population.

In PSO, the velocity update equation includes three factors:
the particle’s current velocity, which represents the particle’s per-
sonal best, and the social component represents the particle’s
global best as defined in Table 5. Particles traverse the search
space while exploiting favourable places based on their previous

 17554543, 2024, 16, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/pel2.12663 by A

rafat Ibne Ikram
 - B

angladesh H
inari N

PL
 , W

iley O
nline L

ibrary on [23/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2662 IKRAM ET AL.

experiences and population knowledge by altering these char-
acteristics. PSO repeats maximum iteration as defined by the
constraints, allowing particles to fine-tune their locations and
velocities. As the population’s best-known positions improve,
particles tend to converge toward the ideal solution over time.
If the termination criteria are met, then PSO breaks from the
iteration loop and gives the output TOU as the solution which
causes the lowest possible electricity value as the optimal value.
For that particular TOU lowest electricity cost can be achieved.

3.5 RCGA modeling

The RCGA is a subtype of the standard genetic algorithm (GA)
using a real-valued representation instead of a binary one [28].
While the traditional GA uses a string of binary digits to express
optimization problems, the RCGA uses real-valued vectors of
TOU for the shiftable loads between 1 < t < 24.

3.5.1 Algorithm flowchart

The algorithmic flowchart for the RCGA optimization tech-
nique is shown in Figure 3. The core elements of a real-coded
genetic algorithm are still essentially the same as those of a con-
ventional GA, but they have been modified to properly handle
real numbers. RCGA algorithm starts with the initialization of
TOU at random, using a real-valued vector for each set. Based
on the objective function, calculate the fitness of each set of
the TOU. The objective of the function is the minimum elec-
tricity cost shown in Equation (16). Depending on their fitness,
the elite population of TOU is chosen from members of the
current population to make up the following generation. Bet-
ter candidates have a larger probability of being chosen like
the traditional GA. This step is also known as parent selection.
To produce a fresh generation, perform crossovers amongst
the selected parents. BLX-𝛼 crossover is applied in this case.
Mutation operation is done on probability as defined in Table 5.

The purpose of mutation is to increase genetic diversity in a
TOU by introducing random variations in a set TOU. For the
subsequent generation, replace the present number with that of
the child and parents together which creates a new population.
This process of elitism, parent selection, crossover, mutation,
and forming a new population set continues till the termination
criteria are met. If the termination criteria are met, then RCGA
breaks from the iteration loop and gives the output TOU as the
solution which causes the lowest possible electricity value as the
optimal value. For that particular TOU lowest electricity cost
can be achieved.

In Table 5, the hyper-parameter for both PSO and RCGA is
provided. PSO evaluates each set of populations from the ini-
tial population of 30 using their cost function. Following that,
the weight function and velocity function are applied to the
current population set. In the PSO, the weight limit specifies
how long a particle must remain in a place before updating its
average weight, while the velocity limit specifies how quickly a
particle (in this example, the created population) should move.

TABLE 6 Analysis condition [32].

Usage hour Tariff rate (Ertp)

Peak hour 11:00 AM to 5:00 PM BDT 10.5

Off-peak hour 6:00 PM to 10:00 AM BDT 7.56

Similar to this, under the RCGA technique, the two best pop-
ulations are filtered out of the first population which resulted
in the lowest and second-lowest power cost for their respec-
tive TOUs by defining 2 on the elite population. The RCGA
is a natural selection procedure. The elite two population pro-
duces new two offspring. A 70% crossover between two elite
parents guarantees that the new offspring from the BLX-alpha
crossover maintains 70% of the variable from its elite parents
1 and 30% from its elite parents 2. The likelihood of muta-
tion determines whether any components of a given population
are altered arbitrarily. The units for this variable are specified in
this manner.

4 ANALYSIS CONDITIONS

The hourly solar radiation and temperature data for 24 h
are shown in Figure 4. The residential load model is tested
with location-specific meteorological data. National Renewable
Energy Laboratory (NREL) data inspection tool is used for
solar data [31]. A battery capacity of 1200Wh (12V and 100ah)
is considered while developing the battery model with an ini-
tial SOC of 60% is considered while estimating the battery
energy. In Table 6, the tariff rate considered for the optimization
operation is given.

5 RESULTS AND ANALYSIS

The hourly solar panel generation and the energy status stored
in the battery model are shown in Figure 5. Peak solar genera-
tion is recorded at around 600 W. The excess energy from the
solar panel after satisfying the load model is stored in the bat-
tery till it reaches the maximum capacity during the availability
of solar generation.

The battery model is used when renewable generation is
unavailable at the end of the peak hour (17:00 PM). Energy
usage from the battery is seen two times, one is to charging the
battery, and the other is when discharging the battery. The total
load demand is shown in Figure 6 with its respective shiftable
and non-shiftable parts for the designed residential load model.
Energy consumption from the electric grid is observed to peak
at 7.35 kWh at that time.

The home appliances are broken down into both shiftable
load and non-shiftable for the summer seasons as shown in
Figures 6(c) and 6(b), respectively.

The TOU of shiftable loads is evenly distributed through-
out the day. The primary objective is to shift the TOU for
these loads so that it does not collide with the peak hour, as
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FIGURE 4 Hourly solar resources.

FIGURE 5 Solar generation and battery status.
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2664 IKRAM ET AL.

FIGURE 6 Total load demand (before optimization).

energy consumption of peak hour is cost high compared to off-
peak hours. After running the two optimization methods on this
shiftable load model two optimal TOUs are found. Both results
show the lowest electricity cost for the day. The convergence
curve for PSO and RCGA is plotted in Figure 7 depicting how
each iteration affects the objective values.

The convergence curve often begins with an initially some-
what high goal value and progressively drops during the course
of the process. The convergence curve should ideally exhibit
a decreasing trend because the method tries to minimize the
objective function. Both PSO and RCGA repeat maximum iter-
ation as defined by the constraints, allowing each set of TOU
solutions to be checked by the objective function. The con-
vergence happens only when the PSO is able to find a lower
than the previous objective value. The algorithm breaks from
the iteration loop when termination criteria are met and gives
the output TOU as the solution which causes the lowest pos-
sible electricity value as the optimal value. The lowest possible
electricity cost is achieved for that particular TOU from both

optimization approaches. Both optimization approaches end
up finding the lowest possible electricity cost which is around
484.33 BDT/day as shown in Figure 7. However, based on
the convergence curve, PSO predicts the optimal TOU for the
least amount of power expenditure faster than RCGA. The load
curve obtained by adjusting the TOU of interruptible load for
both techniques is shown in Figure 8.

On the newly produced load curves generated by PSO and
RCGA by shifting the TOU for shiftable load, it is clear
that PSO’s peak point is greater than RCGA’s, which is near
8.7 kWh. Both algorithms produced the lowest possible elec-
tricity bill 484.335 BDT/day as the objective function is the
same, peak load demand is near 8.7 kWh at 20 of the x-axis
(8:00 PM) for PSO which is higher than before the optimiza-
tion peak demand of 7.5 kWh at 12 of the x-axis (12:00 PM) as
shown in Figure 6(a). The load curve generated by the RCGA
model looks more symmetrical peak point not exceeding the
before the optimization peak demand point. The peak demand
for the RCGA is recorded near 6.3 kWh, which is a more
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FIGURE 7 Comparison of convergence curve.

FIGURE 8 Load curve comparison (PSO vs RCGA).
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FIGURE 9 Load TOU comparison.

symmetrical, and well-distributed load throughout the 24-h win-
dow. The overall performance of RCGA-generated TOU for
shiftable loads is better than PSO-generated TOU for shiftable
loads. Figure 9(a) shows the newly suggested TOU by the PSO
and RCGA for both shiftable load and non-shiftable load for
home appliances and their load demand. By shifting their elec-
tricity usage to off-peak hours, consumers can take advantage
of the lower rates and potentially save on their electricity bills.
Customers can take advantage of the cheaper rates and per-
haps reduce their power costs by moving their consumption to
off-peak hours.

To take advantage of TOU pricing, several utility providers
also provide smart metering equipment, which enables cus-
tomers to monitor their power usage in real-time and alter their
consumption as necessary. Table 7, shows the detailed TOU
for both PSO and RCGA optimization techniques for both the
summer and winter seasons. After optimization, it can be seen
that the majority of shiftable loads are transferred to alterna-
tive TOUs to avoid peak hours. The TOU is unchanged for
non-shiftable loads because they are considered uninterruptible
loads regardless of whether it is a peak hour or not. It is clear
from this that the majority of the load density has been moved
from peak to off-peak hours. When working with considerably
more load that needs to be transferred for the residential load
model’s load balancing function, this could be quite helpful. The
bulk of the load is moved to off-peak times when the tariff rate
seems to be cheaper than during peak times. The estimated cost
of electricity before the optimization is 507.12 BDT/day. After
executing both TOU of shiftable load optimizations, 484.335
BDT/day in the summer season and 297.89 BDT/day in the
winter season, respectively, are determined to be the lowest cost
for electricity, representing a 4.5 percent price reduction for
residential power bills.

6 CONCLUSIONS

The study proposes an optimization strategy for a smart home’s
peak-to-average ratio reduction and cost reduction, focusing on
shiftable and non-shiftable loads. while maximizing comfort for
users. The model minimizes electricity costs by adjusting usage
times using a meta-heuristic approach. A load model is devel-
oped consisting of two types of loads, one is shiftable load
where the time of use can be shifted as per user needs to mini-
mize the overload consumption on peak hours, and the second
is the non-shiftable load, which must run throughout the day.
The behaviour of energy consumption can be explained by set-
ting certain arbitrary criteria. This study revealed the impact of
SHEMS integration as well as the impact of temperature and
wind speed on the power produced by solar panels. By imple-
menting the two different optimization techniques, different
TOUs for shiftable loads were tested and minimal electricity
cost was achieved for the residential load. Both of the algo-
rithms produced the lowest possible electricity bill 484.335
BDT/day in the summer season and 297.89 BDT/day in the
winter season, but the load curve generated by the RCGA model
looks more symmetrical peak point does not exceed the before
the optimization peak demand point. After the optimization
operation, the proposed model can minimize a 4.5% price on
the household power bill.

Future studies should be focused on the same appliance
types comprised of a hybrid renewable energy generating sys-
tem consisting of PV, diesel generators, battery banks, and
wind turbines. The two states of peak and off-peak hour are
considered while optimizing the TOU, most of the devel-
oped country has a tariff rate that is changeable in real-time.
This should also be considered while formulating the model.
Several evolutionary algorithms may outperform the used
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IKRAM ET AL. 2667

TABLE 7 Time of use comparison.

Summer load Winter load

Electrical load TOU (PSO) TOU (RCGA) TOU (PSO) TOU (RCGA)

Blender 6:00PM - 7:00PM 7:00PM - 8:00PM 5:00PM - 6:00PM 6:00PM - 7:00PM

Iron 1:00PM - 2:00PM 1:00PM - 2:00PM 7:00PM - 8:00PM 7:00PM - 8:00PM

Heater 11:00AM - 9:00PM 11:00AM - 9:00PM 10:00AM - 8:00PM 11:00AM - 9:00PM

Microwave oven 1:00PM - 3:00PM; 1:00PM - 2:00PM; 12:00AM - 1:00AM 9:00AM - 11:00AM

8:00PM - 9:00PM 7:00PM - 8:00PM 4:00PM - 5:00AM 3:00PM - 4:00AM

Rice cooker 12:00AM - 1:00PM; 12:00AM - 1:00PM; 11:00PM - 12:00PM; 12:00PM - 1:00PM;

8:00PM - 10:00PM 8:00PM - 10:00PM 7:00PM - 8:00PM 7:00PM - 8:00PM

Washing machine 5:00PM - 9:00PM 5:00PM - 9:00PM 4:00PM - 6:00PM 5:00PM - 7:00PM

Water heater 6:00AM - 7:00AM; 5:00AM - 6:00AM; 3:00AM - 4:00AM; 4:00AM - 5:00AM;

3:00PM - 4:00PM; 2:00PM - 3:00PM; 11:00AM - 1:00PM; 12:00PM - 2:00PM;

8:00PM - 10:00PM 11:00PM - 12:00AM 9:00PM - 10:00AM 11:00PM - 12:00AM

Water pump 1:00PM - 2:00PM; 12:00PM - 1:00PM; 11:00PM - 12:00PM; 12:00PM - 1:00PM;

9:00PM - 11:00PM 8:00PM - 10:00PM 7:00PM - 8:00PM 7:00PM - 8:00PM

Electricity cost BDT 484.34 BDT 297.89

algorithm. Exploring such matters should be carried out as
future work.
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