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Abstract—As distributed energy sources become more preva-
lent, maintaining power grid stability is increasingly challeng-
ing. By integrating machine intelligence and communication
technologies, traditional power networks could transform into
smart grids. Through machine learning and artificial intelligence,
these smart grids can adeptly respond to unexpected changes
in consumer demand, power interruptions, surges in renewable
energy production, and other crucial situations. Variations in
power generation and loads, along with changes in the power
system’s structure, lead to varying shifts in the entire network’s
active power. Detecting these fluctuations through manual anal-
ysis is laborious, but machine learning can be highly impactful
in this regard. This study aims to collect comprehensive data for
analyzing grid stability, utilizing machine learning tools to thor-
oughly examine the data, and adopting a multimodal approach to
compare model outcomes for an improved solution strategy. Our
analysis reveals an accuracy exceeding 0.97, indicating strong
potential for practical application and implications.

Index Terms—Machine Learning, XGB, KNN, Decision Tree,
SVM, GB, Grid, Power, Consumer, Dataset.

I. INTRODUCTION

Maintaining power grid reliability involves ensuring both
a consistent power supply and its quality [1]. Voltage, a
key indicator of power quality, must be carefully controlled
to avoid aging or damage to electrical equipment due to
excessive or insufficient voltage levels. Reactive power is
closely tied to voltage. Excessive reactive power can lead to
a voltage rise, while insufficient reactive power can cause a
voltage drop. To ensure safe and stable power grid operation,
optimizing reactive power distribution is essential [2]. Current
algorithms used in power systems struggle with the complex
grid environment. To achieve real-time automatic optimization
of reactive power and voltage, a more suitable algorithm
is needed [3]. Reactive power optimization is complex due
to nonlinear and hybrid characteristics, involving discrete
(reactive power compensation devices, transformer taps) and
continuous variables (transport voltage). Deep reinforcement
learning, which combines perception and decision-making,
is well-suited for handling intricate and layered issues [4].

Power system problems are often dynamic, multi-constrained,
and nonlinear. Conventional measurement methods suffer
from issues like poor convergence or low accuracy. Deep
reinforcement learning offers a flexible and centralized
approach to optimize reactive power, effectively controlling
voltage balance [5]–[7]. Enhancements in distribution and
energy systems are being accompanied by concurrent
challenges. This necessitates a refined solution that is cost-
effective, stable, dependable, efficient, and secure [8], [9].

These requirements culminate in the notion of a smart
grid, which represents the fusion of ecological considerations
and technological requisites [10]. Due to the expansion of
smart grid infrastructure, effective monitoring, management,
control, protection, and the equilibrium between demand and
production under all conditions emerge as pivotal elements
for the success and efficiency of forthcoming endeavors [11].
Furthermore, the manipulation and analysis of extensive data
stemming from the intelligent infrastructure, characterized by
the five V’s of big data (Velocity, Variety, Veracity, Value, and
Volume), necessitates careful consideration [12]. As a result,
ensuring the stability of the smart grid remains intricate;
however, emerging methodologies such as machine learning
and artificial intelligence offer potent tools for stability
management [13].

Artificial Intelligence (AI) denotes computer models
designed to simulate human thought processes. It addresses
challenges using intelligent methods that don’t necessarily
rely on human involvement. In everyday scenarios, numerous
issues demand resolution, often necessitating human
judgment to identify the optimal approaches, thereby ensuring
successful outcomes for proposed solutions. Machine learning
falls within the domain of Artificial Intelligence, enabling
the acquisition of knowledge from data without explicit
programming. This is achieved through algorithms designed
to enhance the learning process.
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Many researchers have looked into power system stability.
Here, we’ll highlight some of the latest studies and discuss
them. Mamoun Salazar et. al. [14] proposed a cunning ML-
STM model that is familiar with predicting the sufficiency of
the sagacious networks. The proposed model is researched the
splendid grid dataset from UCI man-made intelligence Vault.
The introduction of MLSTM is differentiated and regular ML
models like LSTM, GRU, RNN. The overall assessment shows
the prevalence of the proposed model with respect to precision,
exactness, hardship, and ROC twist estimations. Vuk Malbasa
and his co-author introduced a new method for using power
system data to predict voltage stability, considering uncertain-
ties in machine learning models and computational challenges
[15]. Their experiments demonstrate a notable advantage in
terms of shorter training and prediction times, along with a
reduced number of required measurements to achieve accurate
predictions. The paper suggests a deep learning model using
a combination of Densely Connected Convolutional Networks
and Residual Network structures to identify smart grid stabil-
ity. The model’s outcomes are contrasted with those of widely
used classifier models from various studies, all employing
the same dataset used in our analysis. In [16], the authors
introduced a fresh model for assessing transient stability. They
employed and further advanced machine learning techniques
to identify early signs of potential blackouts. In [17], the
authors investigated machine learning techniques to overcome
the challenge of maintaining a simple representation. They
found that system stability could be achieved even when some
consumers adjusted their power consumption patterns.

In [18], the prediction of grid stability through diverse
machine-learning approaches is reported. The authors
employed a multilayer neural network along with Binary
Particle Swarm and Binary Kangaroo Mob feature selection
techniques. They conducted a comparison with results from
Random Forest Classifier, Decision Tree classifier, Gradient
Boosting Tree, and logistic regression methods.
Variations in generator and load outputs, along with changes
in power system topology, result in diverse shifts in network
active power [19]. Manually detecting these fluctuations
is laborious. Machine Learning is crucial here, swiftly
identifying changes through data analysis. This enhances
power system management efficiency and accuracy, especially
in the face of evolving challenges like renewable integration
and dynamic demand [20].

This study focuses on three main objectives: first, the com-
pilation of an extensive dataset for grid stability analysis with
an adequate number of data nodes; second, the application of
machine learning tools to conduct thorough and in-depth data
analysis; and third, the adoption of a multimodal approach
to compare outcomes from different models for an improved
solution strategy. Supervised learning models are employed
in conjunction with an evaluation process that considers data
visualization and feedback. The analysis reveals accuracy
percentages for various models: XGB - 97.86%, GB - 93.02%,
SVM - 79.42%, Random Forest - 92.56%, KNN - 81.22%, LR

- 81.43%, and Decision Tree - 80.37%. Of particular note, the
XGB algorithm stands out for its exceptional adaptability in
addressing regression, classification, ranking challenges, and
user-defined objective functions.

II. METHODOLOGY

Fig. 1 depicts the main flowchart of the suggested approach.
The process begins with library imports and comprises three
key stages: (1) data visualization, (2) dataset classification,
and (3) application of machine learning. These stages are
elaborated further in the subsequent sections.

Fig. 1. Block Diagram of the System

A. Data Visualization

The section focuses on the sequential steps of data explo-
ration in machine learning. Fig. 2 shows the flowchart of the
data visualization process. It begins with Data Visualization,
which aids in comprehending data distribution and variations.
Following this, Scatter plots are employed, and subsequently,
Pair plots are generated, enhanced with a stability-oriented
hue. This series of processes culminate with a comprehensive
understanding of the data’s intricacies and marks the conclu-
sion of the exploration phase.

B. Data Cleansing

The flowchart (Fig. 3) within the Data Cleansing section
involves a series of essential steps. Initially, the process
addresses data anomalies like spikes or outliers, ensuring their
removal. Next, it focuses on rectifying missing values present
in specific cells. Additionally, a thorough assessment of irreg-
ularities in the data’s shape is conducted. Lastly, the dataset
is transformed to its appropriate data types, optimizing it for
subsequent analysis. These interconnected actions collectively
contribute to the refinement and preparation of the data for
further processing.



Fig. 2. Data Visualization

Fig. 3. Data Cleansing Process

C. Dataset Classification

The Dataset Classification section’s flowchart involves a
streamlined process which is shown in Fig. 4

Initially, the dataset is divided into training and testing subsets,
serving their respective purposes. Further, individual data
frames are established using a 70-30 split ratio, systematically
designed to accommodate various algorithms. This methodical
approach ensures the suitability of the dataset for diverse
algorithmic applications, contributing to effective classification
outcomes.

Fig. 4. Data Classification Process

D. Machine Learning Application

To apply a machine learning model, first prepare the model
by selecting an algorithm and tuning its hyperparameters.
Then, input the dataset for model training, split it into training
and test sets, and calculate all performance parameters. Finally,
it generates accuracy matrices from the test data to visualize
the performance of the model. The whole process shown in
Fig. 5

Fig. 5. ML Application

III. DATASET DESCRIPTION

The dataset shown in Table I, employed in the experiment is
sourced from the UCI machine learning repository, comprising



TABLE I. Dataset Overview

Sl. tau1 tau2 tau3 tau4 p1 p2 p3 p4 g1 g2 g3 g4 stab stabf

0 2.959060 3.079885 8.381025 9.780754 3.763085 -0.782604 -1.257395 -1.723086 0.650456 0.859578 0.887445 0.958034 0.055347 unstable
1 9.304097 4.902524 3.047541 1.369357 5.067812 -1.940058 -1.872742 -1.255012 0.413441 0.862414 0.562139 0.781760 -0.005957 stable
2 8.971707 8.848428 3.046479 1.214518 3.405158 -1.207456 -1.277210 -0.920492 0.163041 0.766689 0.839444 0.109853 0.003471 unstable
3 0.716415 7.66966 4.4486641 2.340563 3.963791 -1.027473 -1.938944 -0.997374 0.446209 0.976744 0.929381 0.362718 0.028870 unstable
4 3.134112 7.608772 4.9443759 9.857573 9.525811 -1.125531 -1.845975 -0.554305 0.787110 0.45450 0.656947 0.820923 0.049860 unstable

60,000 samples and 14 features. It pertains to outcomes from
grid stability simulations for four-node star references, with
features encompassing factors like producer and consumer
reaction times, nominal power generation and consumption, as
well as consumer and producer gamma coefficients. Notably,
the dataset includes variables such as tau1, tau2, tau3, and
tau4 denoting reaction times for the electricity producer and
three consumers, p1, p2, p3, and p4 representing nominal
power, and g1, g2, g3, and g4 as gamma coefficients for both
producers and consumers. The dataset also incorporates two
dependent variables and a categorical "stabf" label indicating
stability ("stable") or instability ("unstable"). The "stab" vari-
able represents the maximal real part of the equation root, with
positive and negative values correlating with system instability
and stability, respectively. Consequently, the "stab" variable is
not utilized as either input or output.

Fig. 6. Data Histogram

A histogram depicting a summary of the data is being gener-
ated. In this visualization (Fig. 6), the data is presented as it
exists in the CSV file, allowing for the identification of any
underlying patterns. The histogram encompasses all properties
of the dataset, including the range of data points. The x-
axis corresponds to the values of the data, while the y-axis
represents the frequency or count of each data point.

Subsequently, a tally of data types is conducted, along with
a count of features within each class. In terms of data type,
there are 13 occurrences of the Float type and 1 occurrence
of the Int type within the CSV. The total label count reveals
38,280 instances for the "Unstable" label and 21,720 instances

for the "Stable" label. Following this, a Seaborn (SNS) pairplot
is generated, utilizing the feature as a hue parameter. The

Fig. 7. Relation in Between Features and Label

Fig. 8. Relation in Between Features and Label

correlation overview among features and the dependent vari-
able is presented in Fig. 7 using the Python Seaborn package.
The heatmap in Fig. 8 highlights a predominantly positive
correlation among most variables, except for p3 and p4, which
exhibit a distinct pattern.

IV. RESULT AND ANALYSIS

In this section, we present the outcomes of the applied
model and draw comparisons. To assess the effectiveness of
the machine learning algorithm, we employ various metrics.
Given the distinct distribution of the dependent variable and



the binary classification nature of the problem [21], we adopt
the confusion matrix. This matrix elucidates the interplay be-
tween the labels [22]. A visual representation of the confusion
matrix is provided in Table II.

TABLE II. Binary Classification Using Confusion Matrix

Predicted Class

True Actual Class
Classes Positive Negative
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Furthermore, our evaluation metrics encompass accuracy, pre-
cision, recall, F1 score, and geometric mean, each of which is
meticulously defined below.

Precision =
TP

TP + FP
(1)

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

Recall =
TP

TP + FN
(3)

F1− Score =
2× Precision×Recall

Precision+Recall
(4)

Table III presents the results of accuracy, precision, recall
and F1-score derived from summing up the confusion matrix
across all models. Among these metrics, the XGB model
attains the most favorable outcomes.

Fig 9 Shows the output result of our experiment. To get
the best results from the analysis, we applied several model
from the Scikit learn toolbox. The results are varied based
on the type of the algorithm. The XGB algorithm produces
the best possible outcome. It is a highly flexible and versatile
tool that can work through most regression, classification, and
ranking problems as well as user-built objective functions. As
an open-source software, it is easily accessible and it may be
used through different platforms and interfaces. The Accuracy
matrics comparison is also shown in Fig. 10

Fig. 9. Output Comparison

Fig. 10. Accuracy Metric Comparison

V. CONCLUSION

This research extensively explored the application of ma-
chine learning models on a simulated grid stability dataset.
The study involved a meticulous comparison of output ac-
curacy across various models, all evaluated using the same
dataset. The models under scrutiny included XGB, GB,
SVM, Random Forest, KNN, LR, and Decision Tree. The
findings incontrovertibly showcased the superior performance
of the XGB model, attaining an impressive accuracy score
of 97.86% when contrasted with alternative models on the
original dataset. This outcome underscores the feasibility and
potential implications of practical utilization. It is worth noting
that, akin to many other machine learning approaches, our
study relied on commonly accessible datasets due to inherent
data acquisition constraints. The dataset’s specifically tailored
distribution, while beneficial for experimental purposes, may
introduce variations in output when extrapolated to real-time
systems. Moving forward, the acquired insights hold promise
for real-world implementation within active grid environments,
fostering practical experimentation. Furthermore, an exciting
avenue for future exploration involves the integration of more
comprehensive machine learning algorithms, thereby extend-
ing the horizons of this research endeavor.
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